风力机之间的尾流效应会造成下游机组的发电量减少,从而导致海上风电场的发电量损失10%~20%[1].交错排布能有效提升风电场的发电量,然而,现有研究主要集中在单一类型的水平轴风电场.Xie等[2]在一个大型水平轴风机(HAWT)周围安装了20个小型垂直轴风机(VAWT),发现其发电量比传统水平轴风力发电场高出32%,且大型HAWT单独提取的功率增加了10%,原因在于小型VAWT的存在加快了尾流区域的速度恢复.Shao等[3]采用致动线模型(ALM)方法研究了HAWT和VAWT串列排布对功率的影响,结果表明:VAWT位于HAWT上游,可以增强HAWT的发电量,是由于风速在VAWT上加速所致;VAWT位于HAWT下游,会略微降低HAWT的发电效率,但总功率仍然增加.Pichandi等[4]发现:在山地地形下将VAWT放置在HAWT上游,不仅有助于提高给定空间的整体功率输出,而且还有助于提高HAWT的功率输出;功率增加与两台风力机之间的间距、叶片尖端之间的间隙及斜坡倾斜度有关.近年来,风电场中机组的交错排布引起了广泛关注,然而研究主要集中在HAWT周围安装小型VAWT及两者串列排布上,两者的尺寸差异较大,且未考虑水平轴风电场的实际排布结构.本研究以典型的大型水平轴风电场布局为基础,在其中错列排布大尺寸VAWT,使用基于OpenFOAM开发的turbinesFoam[5]对风力机进行ALM设置,探讨VAWT排布位置对整体功率及流场特性的影响规律.1 数值方法1.1 致动线基本理论ALM方法[6]是在N-S方程中添加体积力源项,以模拟叶片对流场的作用.这种方法无须建立叶片固壁边界求解叶片边界层流动,网格数量少,降低了计算时间.ALM中流体控制方程为不可压缩黏性N-S方程和连续性方程∂V/∂t+V∇V=-(1/ρ)∇p+v∇2V+fε;∇V=0,式中:V为风速;t为时间;ρ为空气密度;p为流体压力;ν为流体运动黏度;fε为叶片体积力.在ALM中,叶片被简化为由一系列体积力作用点组成的致动线,这些体积力计算由当地攻角与升阻力系数确定,叶素受到的升力L与阻力R分别为L=ClρUrel2cr/2;R=CdρUrel2cr/2,式中:r为叶素宽度;c为当地弦长;Urel为相对速度;Cl和Cd为升阻力系数,是雷诺数和攻角的函数.在实际应用中,须根据具体的雷诺数和攻角值来选择合适的翼型升阻力系数,使用的升阻力系数来自NREL 5 MW风力机[7]官方参数.图1为叶素上的气动力示意图,图中Fx和Fθ分别为合力在法向和切向上的分量.由图1可知10.13245/j.hust.250017.F001图1叶素上的气动力α=φ-β;Urel=Ux2+(ωr-Uθ)2,式中:α为当地攻角;φ为入流角;β为安放角;Ux和Uθ分别为轴向速度和切向速度;ω为旋转角速度;r为旋转半径.因此,单位长度展向体积力为f=(L,R)=ρUrel22c(CleL⃗+CdeR⃗)/2,式中eL⃗和eR⃗分别为L和R的单位方向向量.在求出每个叶素的体积力后,须考虑该力作用于流场的影响范围,且避免奇异性,对体积力进行光顺处理,采用三维高斯函数ηε进行体积力光顺,ηε=exp[-(di/ε)2]/(ε3π3/2)式中:di为网格中心到叶素点的距离;ε为体积力分布因子.因此,光顺后的体积力为fε=f⊗ηε=∑i=1Nfexp[-(di/ε)2]/(ε3π3/2),式中N为致动点数目.1.2 湍流模型及求解器采用OpenFOAM的瞬态不可压缩流求解器pimpleFoam,该求解器为PISO算法和SIMPLE算法的结合.湍流模型采用LES,其中大尺度涡采用网格分解,小尺度涡采用亚格子模型(sub-grid scale,SGS).滤波后的LES控制方程形式如下∂u˜i∂xi=0;∂u˜i∂t+u˜j∂u˜i∂xj=-1ρ∂p˜∂xi+v∂∂xj(∂u˜i∂xj)-∂τijSGS∂xj+fε,式中上标~表示分解量,τijSGS=uiuj̃-u˜iu˜j为SGS应力,采用Smagorinsky亚格子模型描述亚格子应力.SGS应力的偏差部分τijSGS,dev.=τijSGS-τkkSGSδij/3使用Boussinesq方法估计,τijSGS,dev.=-2vSGSSij̃,其中vSGS为亚格子涡黏系数,为可解尺度的涡流变形率,可通过下式计算vSGS=(CSΔ)2Sij̃,式中:Sij̃=12(∂u˜i∂xj+∂u˜j∂xi),Δ=(ΔxΔyΔz)1/3为滤波尺寸;CS为Smargorinsky常数,取值0.158.2 风力机网格及模型验证分析HAWT采用NREL 5 MM风力机[7]为计算模型,参数设置:转子直径126 m;轮毂高度90 m;额定风速11.4 m/s;额定转速12.1 r/min.在ALM设置方面参考了Yu等[8]的研究,并模拟塔架及轮毂.VAWT采用额定功率为200 kW[9]的H型转子VAWT作为计算模型,参数设置:直径26 m;轮毂高度40 m;叶片长度24 m;叶片弦长0.4~0.9 m.为了简化计算,对VAWT叶片弦长做简化处理,取弦长为0.9 m,并忽略塔架及支撑杆.首先对单一HAWT进行网格无关性验证,计算域大小为3 150 m×1 260 m×630 m,而VAWT尺寸较小,对VAWT网格无关性验证时,计算域减小为2 000 m×400 m×200 m.入口边界为速度入口,出口边界为零梯度条件,顶部和两侧为滑移壁面,底部为壁面边界条件.为模拟ABL条件,速度入口采用atmBoundaryLayerInletVelocity类型,其速度剖面定义为v(z)=(v*/κ)ln(z/z0),式中:ν*为流动摩擦速度;κ为卡曼常数;z0为地面粗糙长度,取z0=0.01 m.为同时满足HAWT及VAWT时间步长计算要求,在满足库朗数情况下选择时间步长为0.02 s.初始网格尺寸均为10 m,并采用多级加密处理方式对风轮区域网格进行加密.HAWT与VAWT风轮附近网格尺寸及不同尺寸网格下的功率系数(CP)如表1所示.根据Jonkman等[7] NREL 5MW风力机为额定风速时,CP=0.4418,对比发现中网格尺寸时CP误差最小,根据Möllerström等[10]的研究,VAWT在额定风速时,功率系数为CP=0.34,对比不同网格尺寸发现中网格尺寸时CP符合度最好.10.13245/j.hust.250017.T001表1HAWT与VAWT不同网格尺寸下的功率系数网格类型网格尺寸/m网格数量/106CPHAWT粗网格2.500 005.419 1060.439中网格1.250 006.216 0560.441细网格0.625 007.319 9280.485VAWT粗网格0.625 003.183 9720.328中网格0.312 504.428 5720.344细网格0.156 255.422 8520.373图2为三种网格尺寸下HAWT的涡量等值面,由图2可知:三种网格都捕捉到了HAWT的大尺度叶尖涡和叶根涡,图2(b)和(c)还捕捉到了塔涡.随着网格尺寸减小,HAWT叶片形状越接近一条线且对涡捕捉增多,这表明网格尺寸越小,捕获的流场信息越精准.VAWT的流场结构也证明了这一结论,如图3所示.综合功率系数、流场结构及所需的计算时间,确定HAWT与VAWT风轮附近最小网格选择为1.25 和0.312 5 m.10.13245/j.hust.250017.F002图2HAWT涡量等值面(色标单位:m/s)10.13245/j.hust.250017.F003图3VAWT涡量等值面(色标单位:m/s)3 HAWT与VAWT相互作用3.1 工况及计算域设置以大型水平轴风电场布局为背景,机组流向间距为7D (D为HAWT风轮直径),横向间距为3D.在HAWT机组间隙排布VAWT,以研究在风电场中HAWT满发状态下,不对HAWT做变桨调节时,两种机组的相互作用,分析机组功率输出特性及尾流特性.为减小风电场尾流叠加带来的影响,突出HAWT与VAWT之间尾流的相互作用,且减少计算时间,选取一组HAWT与VAWT开展研究,计算域如图4所示.以HAWT轮毂中心为坐标原点(图中红色圆点位置),入流方向为x轴正方向.根据风电场机组流向及横向机组间隙,使得VAWT能均匀排布在间隙中,给出六种不同位置.VAWT位置坐标如表2所示,并设置仅包含HAWT或仅包含VAWT的对照组.10.13245/j.hust.250017.F004图4计算域示意图10.13245/j.hust.250017.T002表2VAWT位置坐标工况dx/Ddy/D1-3.50.02-3.51.53-1.01.541.01.551.01.06-3.51.03.2 风力机功率输出特性分析HAWT,VAWT,HAWT+VAWT功率输出如表3所示.相较于对照风力机功率,工况2,3,6 中HAWT输出功率有所提升,其中工况6中HAWT功率提升了0.44%.然而,工况4,5中HAWT输出功率有所下降.这一现象表明:当VAWT位于HAWT前方时,由于VAWT的存在,风速经过VAWT时加速了后方风速,不进行变桨调节时,满发状态下的HAWT依然增加了功率.相反,VAWT位于后方则会降低HAWT功率输出.在工况1中,尽管VAWT位于HAWT前方,但HAWT输出功率显著下降,主要是由于HAWT的风轮底端低于VAWT的风轮底端,位于上游的VAWT产生的尾流作用于HAWT的风轮,降低了HAWT性能,导致其输出功率显著下降.10.13245/j.hust.250017.T003表3HAWT,VAWT,HAWT+VAWT功率输出工况HAWT功率VAWT功率HAWT+VAWT功率14 8711044 97625 0101055 11535 0011025 10344 9941155 10854 9911205 11165 0221055 127对照组(单一HAWT)5 000对照组(单一VAWT)106kW不同工况下VAWT功率输出存在一定的差异,且由于大气边界层(ABL)入流条件,输出功率低于额定功率.在工况1,2,3,6中VAWT位于HAWT前方,VAWT输出功率略低于对照风力机功率;而在工况4和5中VAWT位于HAWT后方,输出功率相较于对照风力机功率均有所提升,其中工况5输出功率提升了13.21%.此外,通过对比工况2与3发现:当VAWT位于HAWT前方且横向距离相同时,随着流向距离逐渐接近HAWT,VAWT的输出功率呈现降低趋势.而对比工况4与5发现:当VAWT于后方且流向距离相同时,随着横向距离与HAWT的接近,VAWT的输出功率呈现上升趋势.在水平轴风电场机组间隙中加入VAWT后,除工况1以外,总输出功率相较于单一HAWT都有提升,其中,工况5总输出功率提升了2.22%,工况6总输出功率提升了2.54%.因此,在水平轴风电场机组间隙合适位置加入VAWT,能够有效提升风电场功率输出,并实现对水平轴风电场机组间隙的充分利用.3.3 风力机尾流特性分析VAWT轮毂高度水平截面瞬时速度云图如图5所示.可以看到:VAWT尾流在经过HAWT近尾流区域时有明显的偏转,表明两者之间存在排斥作用.然而,在远尾流区域两者相互混合,这种混合作用促进了HAWT尾流蜿蜒.此外,HAWT风轮前方有低风速区域,在近尾流区域两侧存在风速加速区域,这也解释了VAWT位于HAWT前方时,功率会下降,位于后方时会有明显的提升.在工况1中,VAWT在HAWT前方串列排布,VAWT尾流完全作用于HAWT风轮,使得HAWT风轮前方气流发生紊乱,增强了湍流,破坏了HAWT的气动性能,导致HAWT风轮无法有效地捕获风能,因而HAWT尾流速度高于其他工况.工况2与3中VAWT位于HAWT前方,当VAWT尾流到达HAWT附近时,尾流发生了偏转.工况4与5位于HAWT后方,两种工况中VAWT处于HAWT影响范围内,因而VAWT尾流未发生明显的偏转,但在工况5中,VAWT尾流与HAWT尾流之间的相互作用更为强烈,VAWT尾流使得HAWT尾流蜿蜒发展更加明显,尾流速度恢复也明显加快.工况6中,VAWT尾流在经过HAWT时表现出更强的偏转效应.在两者尾流接触区域,出现了速度增大的现象,这一现象将有助于尾流的恢复.10.13245/j.hust.250017.F005图5瞬时速度云图(色标单位:m/s)HAWT尾流在6D位置的横向截面平均速度等值线如图6所示.加入VAWT后,HAWT尾流受到了一定程度的影响.工况1和6的尾流速度恢复高于对照组,而其他工况的尾流速度恢复则略低于对照组.相较于工况1,工况6不仅尾流速度恢复更快,而且HAWT功率也有所提升.这些结果表明,VAWT的存在可以加速HAWT尾流的恢复过程.10.13245/j.hust.250017.F006图6平均速度等值线图(色标单位:m/s)VAWT轮毂高度水平截面涡量云图如图7所示.在工况1中,VAWT涡流对HAWT涡流产生显著影响,当VAWT涡流到达HAWT风轮时,HAWT涡流结构被破环,叶尖涡破碎,对HAWT风轮性能产生严重影响.工况2与3中VAWT涡流都发生偏转,但涡流结构保持稳定.工况4与5中VAWT位于HAWT后方,VAWT涡流有偏向于HAWT趋势,说明HAWT对VAWT涡流存在吸引作用.工况5相较于工况4,VAWT横向距离HAWT更近,两者涡流吸引效应强烈,但依然保持各自涡结构.工况6相较于工况2横向距离HAWT更近,在VAWT涡流经过HAWT近尾流区域时表现出更强的排斥现象,在远尾流处相互作用,融于HAWT涡流之中.10.13245/j.hust.250017.F007图7涡量云图(色标单位:s-1)归一化处理HAWT轮毂中心水平和垂直截面的风速廓线如图8所示,U为HAWT轮毂高度水平速度,Zhub和Uhub分别为HAWT轮毂高度及轮毂高度风速.由图8(a)可以看出:HAWT近尾流区域平均速度廓线都出现了横向不对称性.这是由于叶片旋转导致塔架后出现斜流所致[11].同时由速度廓线可以看出:VAWT的加入对HAWT轮毂高度处风速影响较小,在尾流6D位置处,工况3~5的速度廓线与对照风速廓线存在明显的差异.从相对位置来看,这三种工况的流向距离HAWT较近,从而导致了HAWT尾流速度较低.在远尾流区域,速度廓线与对照速度廓线相近,这表明两者尾流的相互作用,加速了尾流的恢复.图8(b)显示了HAWT轮毂中心垂直截面的风速廓线,主要差异也表现在6D位置,工况3~5降低了HAWT尾流速度,但在远尾流区域,相较于对照速度廓线,在轮毂高度以上有更高的风速.在工况6中,垂直截面的速度廓线与对照速度廓线在近尾流区域相近,在远尾流区高于对照速度廓线,这表明VAWT尾流对HAWT尾流恢复有促进作用.10.13245/j.hust.250017.F008图8HAWT风速廓线归一化处理VAWT轮毂中心水平截面风速廓线如图9所示,u为VAWT轮毂高度水平速度,d和uhub分别为VAWT风轮直径和轮毂高度风速.从图中可以看出:工况1中VAWT尾流速度廓线低于对照速度廓线,主要是HAWT风轮降低了其前方风速,进而影响了VAWT的尾流恢复.工况2中VAWT近尾流区域受HAWT影响较小,然而在远尾流区域,由于偏转效应的影响,速度廓线在靠近HAWT一侧高于对照风速廓线,而在另一侧低于对照风速廓线.工况3中VAWT尾流在2d位置时与对照风速廓线相近,在6d左右受到HAWT尾流影响,速度廓线出现明显的偏转,且尾流速度高于对照风速廓线,说明两者尾流相互作用可以加快VAWT尾流恢复.工况4和5位于HAWT后方,尾流速度廓线规律与其他工况不同,在10d左右位置发生变化,速度廓线在靠近HAWT一侧低于对照风速廓线,而在另一侧高于对照速度廓线.工况6中VAWT尾流在到达HAWT之前一直与对照风速廓线相近,在经过HAWT后,出现与工况2相似的规律.10.13245/j.hust.250017.F009图9VAWT风速廓线HAWT轮毂中心垂直截面不同位置归一化湍动能(TKE)廓线分布如图10所示.TKE被定义为k=0.5(〈u'u' 〉+〈v'v' 〉+〈w'w' 〉),其中:u',v',w'分别为三个方向上的脉动速度分量;〈 〉为时间平均.在加入VAWT后,近尾流区域内TKE略微增大,这可能会增加风轮疲劳载荷,但更强的环境湍流将促进HAWT尾流的混合,从而使尾流恢复速度加快[2].在工况1的近尾流区域,TKE显著增强,不仅轮毂高度以下的TKE得到增强,HAWT轮毂高度以上TKE也有一定的增强.值得注意的是,在远尾流区域,各工况下TKE在轮毂高度区域均有所降低,这表明在远尾流区域,VAWT与HAWT的相互作用加速了尾流的恢复过程.10.13245/j.hust.250017.F010图10HAWT湍动能廓线4 结论a.当VAWT的风轮底端高于HAWT的风轮底端位置且在HAWT前方串列排布时,VAWT的尾流会对HAWT产生不利影响,导致其功率降低.而在HAWT前方错列排布时,会对HAWT产生有利影响,提升其功率输出.b.当VAWT位于HAWT后方时,会略微降低HAWT功率,但由于HAWT影响,VAWT功率会得到显著提升,相比于单一HAWT机组,整体功率仍会增加,且最大增加2.22%.c.在水平轴风电场机组间隙加入VAWT,VAWT尾流与HAWT尾流相互作用,呈现出更快的尾流恢复速率.d.在水平轴风电场机组间隙加入VAWT,不仅可以提升风电场的发电量,而且能充分利用风电场空间资源,可以在不改变原有布局的情况下对正在运行的风电场进行改造,具有广阔的应用前景.
使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,
确定继续浏览么?
复制成功,请在其他浏览器进行阅读
复制地址链接在其他浏览器打开
继续浏览